

8CX300Nd/N

COAXIAL TRANSDUCER

KEY FEATURES

- High power handling: 500 / 100 W program power
- High sensitivity: 96 / 104 dB (1W / 1m) (LF / HF)
- 2,5" / 1,75" voice coil (LF/HF)
- Common neodymium magnet system design
- Shorting cap for extended response

- Weatherproof Carbon Fiber loaded paper cone
- Santoprene™ surround
- PM4 HF diaphragm
- 70° coverage horn for HF dispersion control

TECHNICAL SPECIFICATIONS

Nominal diameter	200 mm		8 in
Rated impedance (LF/HF)			8/8Ω
Minimum impedance (LF/HF)		5	,3 / 4,7 Ω
Power capacity 1 (LF/HF)		250 /	50 W _{AES}
Program power ² (LF/HF)		50	0 / 100 W
Sensitivity (LF/HF 3)	96 dB	1W /	1m @ Z _N
	104 dB	1W /	1m @ Z _N
Frequency range		60 - 2	20.000 Hz
Recom. HF crossover	1,5 kHz or higher (12 dB/oct min slope)		
Voice coil diameter (LF/HF)	63,	5 mm	2,5 in
	44,	4 mm	1,75 in
BI factor			12 N/A
Moving mass			0,020 kg
Voice coil length			15 mm
Air gap height			7 mm
X _{damage} (peak to peak)			24 mm

THIELE-SMALL PARAMETERS4

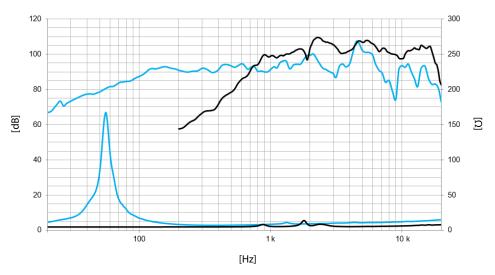
Resonant frequency, f _s	61 Hz
D.C. Voice coil resistance, R _e	5,4 Ω
Mechanical Quality Factor, Q _{ms}	13
Electrical Quality Factor, Q _{es}	0,30
Total Quality Factor, Qts	0,29
Equivalent Air Volume to C _{ms} , V _{as}	23 I
Mechanical Compliance, C _{ms}	335 μ m / N
Mechanical Resistance, R _{ms}	0,6 kg/s
Efficiency, η ₀	1,6 %
Effective Surface Area, S _d	0,022 m ²
Maximum Displacement, X _{max} ⁵	6 mm
Displacement Volume, V _d	132 cm ³
Voice Coil Inductance, Le	0,3 mH

Notes

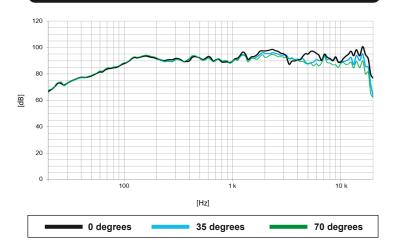
¹ The power capaticty is determined according to AES2-1984 (r2003) standard.

² Program power is defined as power capacity + 3 dB.

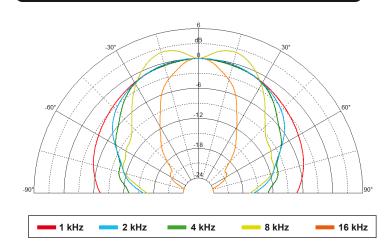
³ Sensitivity was measured at 1m distance, on axis, with 1W input, averaged in the range 1 - 7 kHz


⁴ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

 $^{^{\}rm s}$ The X_{max} is calculated as (L_{vc} - H_{ag})/2 + (H_{ag}/3,5), where L_{vc} is the voice coil length and H_{ag} is the air gap height.

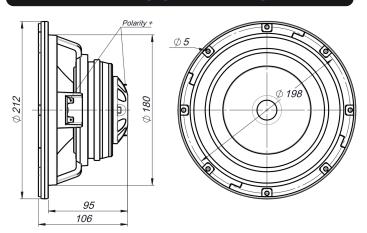

8CX300Nd/N

COAXIAL TRANSDUCER


Note: Frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

FILTERED FREQUENCY RESPONSE

Note: Filtered frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m using filter FD-2CX


POLAR PATTERN

MOUNTING INFORMATION

Overall diameter	212 mm	8,3 in
Bolt circle diameter	198 mm	7,8 in
Baffle cutout diameter:		
- Front mount	180 mm	7,1 in
Depth	106 mm	4,2 in
Net weight	2,8 kg	6,2 lb
Shipping weight	3,0 kg	6,6 lb
11 0 0		

DIMENSION DRAWING

